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Abstract
Motivated by evidences of helical wrapping of polymeric molecules around
nanotubes, we perform a systematic study of how the electronic density of states
of nanotubes is affected by the introduction of a coiling polarizing potential. The
coiling perturbation, characterized by the wrapping angle, the polarizing width
and the polarization strength, introduces an additional geometrical chirality that
may not necessarily coincide with the intrinsic chiral angle of the nanotube.
Features of the electronic density of states are shown to depend on this
perturbation with different degrees of sensitivity. When correlated with the
binding energy between the nanotube and the wrapping molecule, we find that
noticeable changes in the density of states occur only for minimally bound
structures.

(Some figures in this article are in colour only in the electronic version)

Carbon nanotubes are low-dimensional nanoscopic structures with remarkable physical
properties. More than a decade of intensive research on carbon nanotubes gives support to the
general belief that these are outstanding materials with tremendous potential for technological
applications. As regards their intrinsic physical properties, among the most interesting are that
they are mechanically very strong, are excellent conductors of thermal energy, and may be
metallic or semiconducting depending exclusively on the spatial arrangement of their atomic
structure. This latter property results from certain geometrical conditions that determine
whether or not a nanotube can display extended electronic states at its Fermi level.

Doping is the typical way of changing the electronic properties of any given material.
In fact, by adding impurities to a host material one can change its transport characteristics.
Typically, impurities are spatially uncorrelated and are responsible for multiply scattering
the electrons that travel across the structure. As a result of this scattering, the transmitted
wavefunctions are reduced and so is the overall conductance of the material. This is the
case, for instance, in conductance modulation of nanotubes through both atomic and molecular
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doping [1–3]. To give a concrete example, the ability to change the conductance of a nanotube
exposed to certain gaseous molecules is driving the research to build sensitive nanodevices
capable of detecting minute concentrations of specific substances [4].

Of a very different nature, geometrically ordered doping agents can also affect the
conductivity of a host material but examples are not as plentiful and common as their disordered
counterparts. Having nanotubes as hosts, the list of examples in which impurities are spatially
ordered is even more limited. Although the underlying lattice remains the same, in this case the
spatially ordered perturbing potential that acts on the nanotube due to the impurities may follow
a different geometrical arrangement. Depending on the strength of the perturbation as well as
on its spatial geometry, this can in principle lead to interference effects, both constructive and
destructive, that will affect the overall band structure of the material. Rather than a purely
abstract and speculative hypothesis, here we argue that this may actually occur with nanotubes
helically wrapped by linear charge distributions.

Charged one-dimensional-like structures such as polymers and DNA molecules are known
to interact with nanotubes and to produce unusual physical properties: the former affecting the
mechanical [5], thermal [6, 7] and electronic [8] properties of nanotube–polymer composite
materials and the latter being used as a technique to separate nanotubes of different types [9].
As a result of this interaction, these molecules can sometimes coat the walls of a nanotube.
Regarding the coating morphology, there are evidences indicating that these long molecules
tend to wrap around the tubular structures in a helical fashion [10, 11]. Because the presence
of a charge distribution near the tube is expected to polarize the local electronic density in
its proximity, the effect of the wrapping can be reproduced by the introduction of a helically
symmetric potential. While not necessarily completely geometrically ordered, this potential
is certainly not random either. Despite previous suggestions that the helicity displayed by
the wrapping molecules should follow the intrinsic chirality of the nanotube [12], contrary
arguments suggest that these bulky molecules are not capable of resolving the atomic structure
of the underlying lattice [13, 14]. In this case tubes may then be exposed to two different helical
pitches, namely, the intrinsic chirality of the nanotube and that associated with the wrapping
potential. It is our goal here to investigate the effect that this combination of chiralities may
have on the nanotube band structure and, in particular, on its electronic density of states (DOS).

Nanotubes are here described by the following effective tight-binding Hamiltonian

Ĥ0 =
∑

j, j ′
| j〉γ 〈 j ′|, (1)

where | j〉 represents the π -orbital centred at atom j , | j ′〉 is a nearest-neighbour orbital centred
on atom j ′, and γ is the nearest-neighbour electronic hopping, hereafter chosen to be our
energy unit. Such a simple Hamiltonian is known to reproduce well the electronic structure of
nanotubes. The presence of the linear charge distribution will be accounted for by assuming
that it can polarize what lies in its close proximity. In this case, these polarizable entities are
the carbon atoms on the tube which are subjected to the following perturbing potential

V̂ =
∑

�

|�〉λ〈�|. (2)

In the equation above, the index � labels the carbon atoms affected by the proximity to the
wrapping molecules and λ represents the corresponding shift in their on-site potential as a result
of the induced polarization. This latter parameter can in principle be determined in accordance
with the measured binding energy between the nanotube and its wrapping molecules, thus
reflecting the intuitive notion that strong binding between the parts should induce a substantial
degree of polarization on the tube. Furthermore, the fact that ionic doping agents can affect
the amount of charge carried on the DNA backbone suggests that we may consider a range of
values for λ, which we will hereafter regard as an adjustable parameter.
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Figure 1. Schematic representation of a helically-wrapped nanotube. In (a) we display a polymeric
molecule represented by a continuous charge distribution of width W coiling at an angle θ around
the surface of the nanotube. In (b) we display the corresponding geometry in the unwrapped
representation. The atoms to be perturbed are indicated by the dark (blue) balls, while the
unperturbed atoms are the light (yellow) balls. D is defined in the picture as the distance between
equivalent atoms of neighbouring stripes. Also depicted is the circumference of the nanotube (2π R)
where R is the nanotube radius.

Figure 1 shows a possible configuration in which a polymeric molecule is helically
wrapped around a nanotube. As previously mentioned, it is unlikely that the wrapping
molecules are able to resolve the atomic structure of the underlying nanotube. Therefore, rather
than considering the precise atomic structure of the molecules, we treat them as a continuous
charge distribution of uniform width wrapped around the nanotube at an angle θ , as depicted
in the unwrapped scheme by the two-dimensional stripe in figure 1(b). The lateral dimension
of the wrapping molecule determines the width W of this stripe. We assume that the induced
polarization represented by the perturbing potential in equation (2) affects all carbon atoms
immediately below the charged stripe. With these simplifications in place, we can map the
problem of helical charge distributions surrounding the surface of a nanotube by introducing a
helically-symmetric square well potential that follows a similar chirality. In principle, the angle
θ bears no direct relation to the chiral angle α of the underlying nanotube.

The perturbation V̂ is characterized by the wrapping angle θ , the strength λ, and the width
W . To assess how the electronic structure of a nanotube is influenced by the wrapping potential,
we have performed a systematic study of how the electronic DOS is affected as some of these
different parameters are varied. In particular, since they are quasi-one-dimensional, nanotubes
have densities of states containing several van Hove singularities (VHS). By locating these
singularities and tracking how they evolve as the aforementioned parameters are varied, one can
view, at least from a qualitative point of view, how nanotubes respond to such perturbations.

The sequence adopted in this paper is as follows: in section 1, we discuss the details of our
calculations, as well as defining some useful concepts; in sections 3–5, we present results for
the dependence of a few physical observables on the microstructure parameters λ, θ and W ;
and in section 6 we present conclusions and discussion.

1. Calculational details

For the calculation of electronic energy levels of any given structure, it is often convenient to
use suitable coordinate systems that reflect the symmetry of the problem under investigation.
In this case one would expect the introduction of a helical coordinate system to solve the
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single-particle Schroedinger equation. However, this can be avoided if we treat the system in
its unwrapped form, as shown in figure 1(b). Bearing in mind the periodic boundary conditions
required to represent the true cylindrical shape of the tube, we can visualize the helical potential
as an array of equally-spaced stripes of finite width on a boundless graphene sheet.

To calculate the electronic structure of the system in the nearest-neighbour tight-binding
model, we directly solve the Schroedinger equation in reciprocal space, which requires the
introduction of a repeating unit cell. We assume that the perturbing potential makes P full
twists in the space of Q primitive unit cells of the nanotube, and that P and Q are integers
with no common factor. Then if �T is the translational vector of the nanotube’s unit cell, the
perturbed structure is periodic along the tube axis (chosen as our z-axis), with period Q| �T |. As
a concrete example, the system depicted in figure 1(b) has P = 2, Q = 9, and �T = aẑ, where
a is the distance between two crystallographically equivalent atoms in a graphene lattice, and ẑ
is a unit vector along the tube axis.

Since we have a periodic system, we can apply the Bloch theorem to write Ĥ = ∑
k Ĥk,

where k is the wavenumber in reciprocal space. If there are N electronic states in this supercell,
for each value of k ∈ [0, 2π

Q| �T | ) we must diagonalize the matrix 〈l|Ĥk |m〉 to obtain the N

eigenvalues ω jk . To construct the density of states per atom, ρ(E), we use the eigenvalue
representation for the single-particle Green function

ρ(E) = −Q| �T |
2π2

Im

(∫ 2π

Q| �T |

0
dk

N∑

j=1

1

(E + iη) − ω jk

)
, (3)

where η is a real quantity that should be taken in the limit of η → 0.
Once we have the DOS per atom, we can calculate auxiliary quantities such as the Fermi

level of the composite material, determined by demanding that

∫ EF

−∞
ρ(E) = 1 + �C. (4)

This last follows from the observation that there should be one pz electron per carbon atom
plus any contribution coming from a possible charge transfer �C between the nanotube and
the perturbing agent.

Of particular interest to us is the behaviour of the DOS. In the case of semiconducting
nanotubes in the absence of any perturbations, the DOS is characterized by an energy gap
separating a series of VHS. For perturbation-free metallic tubes, the same singularities are
separated by a finite dispersionless region around EF. It turns out that in the case of metallic
nanotubes, the DOS acquires gaps when subjected to perturbations of various types, one
primary example being the introduction of weak curvature effects [15]. In the case considered
here, the introduction of a helical perturbation is no different and always induces the opening
of small gaps at the Fermi level. As we shall see, under certain circumstances this gap is so
small that it is unlikely that its effect would ever be observable, being easily washed out by
thermal effects and/or by small charge transfers between the parts. Nevertheless, it is important
to quantify them so that we can estimate characteristic temperatures and/or critical levels of
charge transfer required to perceive a possible metal–insulator transition. Bearing in mind our
goal of investigating how the characterizing features of the electronic DOS of nanotubes are
affected by the helical perturbation, we look at how these gaps are affected by the potential V̂ .
More specifically, we determine how the VHS (and indirectly the associated gaps) change with
the variation of three independent parameters: θ , the angle which the stripe makes with the tube
axis, W , the width of the perturbation and λ, which governs the amplitude of the perturbation.
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Figure 2. (a) The DOS for a (4, 4) armchair nanotube perturbed at an angle of θ = π
3 rad by a

2.0 Å wide stripe of amplitude λ = −0.3γ . The dashed line corresponds to the on-site energy of
the unperturbed nanotube, while the dotted line marks the maximum of the first VHS above the
Fermi level. (b) The corresponding energy iso-surfaces in reciprocal space for a graphene sheet
perturbed by a series of equally spaced stripes. The straight lines depict the quantized wavevectors
that are permitted due to the boundary conditions. Two distinct iso-energy surfaces are presented,
corresponding to the two energies highlighted in (a). The iso-surface corresponding to the VHS
energy is seen to touch the lines of quantization tangentially, in contrast to that of the lower energy.

2. Location of van Hove singularities

It is well known that the VHS associated with a SWNT have a simple geometric interpretation.
The Brillouin zone of graphene corresponds to a hexagon in reciprocal space, and the effect
of wrapping a graphene sheet into a nanotube confines the electronic wavefunction in the
circumferential direction. This leads to a quantization of the circumferential component of
the wavevector. Accordingly, the electronic structure of the resulting nanotube is obtained by
considering only those states which lie in a series of discrete equally spaced lines overlaid on
the Brillouin zone of graphene. If one plots the iso-energy surfaces for the graphene sheet for
different energies, one sees that the VHS in the DOS of the nanotube correspond precisely to
those energies where the allowed wavevector lines touch the iso-energy surfaces tangentially.

One can apply the same reasoning in the case of our perturbed system. In this case,
however, the Brillouin zone will be contained in a parallelogram, due to the oblique shape
of our real space unit cell. Again, the spatial confinement of the electronic wavefunctions
induces a wavevector quantization. Unsurprisingly, the VHS of the composed system can be
tracked in the same fashion as in the case of the unperturbed system, as the points of tangency
of these quantized lines to the iso-energy surfaces appropriate to the perturbed system. It is
worth stressing that the constant-energy surfaces are no longer determined by the electronic
structure of a simple graphene sheet. In this case, it corresponds to the electronic states
associated with a sheet of hexagonally ordered atoms whose on-site potentials display the
striped geometry depicted in figure 1(b). This is illustrated in figure 2. On the left panel (a),
we plot the DOS of a (4, 4) nanotube perturbed by a helical potential defined by θ = π/3 rad,
W = 2.0 Å and λ = −0.3γ . Two vertical dashed lines are also included, one at E = 0.0 and
another at E = 0.63γ . The former (thick line) marks the on-site energy of the unperturbed
carbon atoms and the latter (thin line) coincides with a VHS displayed in the DOS. The right
panel (b) shows the corresponding constant-energy plots in reciprocal space superimposed with
equally spaced lines representing the allowed wavevectors that the electronic states can have.
Once again the thick-line iso-surface corresponds to E = 0 whereas the thin-line curves are
associated with E = 0.63γ . It is evident that, for E = 0, the iso-surface intersects (non-
tangentially) the quantized wavevector lines indicating the existence of extended electronic
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Figure 3. (a) Dependence of the minigap m11 on the width W for an (18, 0) nanotube coiled by
a uniform stripe at angle θ = 0.978 rad and λ = −0.3γ . The maximum value of m11 occurs
at W/D = 0.5 and is used here as a reference. The smooth solid line is a quadratic fitting. The
overall trend is of a non-monotonic increase in the perturbation-induced minigap. (b) Dependence
of the transition M11 on the width W for the (18, 0) nanotube (dashed, black curve) together with
a quadratic regression (continuous curve) in units of the unperturbed transition M0

11 = 0.57γ .
λ = −0.3γ in all cases. The overall trend is towards a red-shifting of the transition, with a energy
change of at most about 11%.

states at that energy, also confirmed by the finiteness of its DOS. In contrast, for E = 0.63γ , the
thick-line iso-surface tangentially intersects the quantized lines, proving that the geometrical
interpretation mentioned above is also valid for the nanotube in the presence of the helical
perturbation. With such a simple geometrical picture, one can easily trace how the VHS
positions are affected by the helical potential. Bearing in mind that optical transitions are
usually dependent on the distance between neighbouring VHS, this picture seems useful to
study how the electronic structure of a nanotube is affected by the wrapping perturbation. In
what follows we adopt the standard notation of M j, j and Sj, j for the separation between the
j th VHS for metallic and semiconducting tubes, respectively. Following a similar notation, we
represent the perturbation-induced minigaps in metallic tubes by the quantity m11.

3. W -dependence

The effect of the helical potential on the nanotube atoms can be separated into two disjoint
contiguous subsets: a stripe of polarized atoms, and another in which the atoms are unperturbed.
W is an upper bound for the perpendicular distance between any two perturbed atoms, as
measured normal to the direction of the perturbation. Following figure 1(b), we define D
as the distance between two equivalent atoms of neighbouring stripes. It follows from these
definitions that W must range between 0 and D. It is worth noting that stripe widths such
that W/D ≈ 0 (low coverage) are somewhat equivalent to the cases of nearly full coverage
in which W/D ≈ 1. In each of these limiting cases, we expect the shape of the DOS to
approach that of the uniform tube, albeit in the second case with a rigid shift of its centre of
mass from EF = 0 to the value EF = λ. Despite the fact that W can take any value in the
range [0, D], the dependence of the quantities of interest as a function of W must acquire a
step-like quality. This is because for any value W , there is a minimum quantity �W that the
stripe must be widened by in order to contain a new perturbed atom. This is illustrated in
figure 3(a) where we show how m11 depends on W for an (18, 0) nanotube with λ = −0.3γ

and θ = 0.978 rad. Plotted in units of m11 for W/D = 0.5, which is the maximum value for the
minigap (m11 = 0.0056γ ), we see that the minigap scales approximately quadratically with the
ratio W/D. The locations of the main VHS are also affected by the perturbation. In this case,
the energy distance between the first VHS on either side of the Fermi level, here labelled M11
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Figure 4. (a) A plot of m11, for various coiling angles (full line, with points). This plot is in units
of γ . (b) A plot of the energy difference between the two VHS on either side of the Fermi level
for an (18, 0) zigzag nanotube (corresponding to the M11 transition in the pure tube) for different
coiling angles. The plot is normalized to the size of the transition for the clean tube M0

11. The
amplitude of the perturbation is held constant at −0.3γ , and so is the width of the perturbation at
W = 6.7 Å. The smooth lines corresponds to a high order polynomial approximation to the curve,
and are intended as a guide to the eye.

by analogy with the unperturbed tube, is plotted in figure 3(b) as a function of the width W for
the same set of parameters, in units of the unperturbed transition energy M0

11. Once again the
step-like behaviour of the calculated results are smoothened by fitting the curve to a quadratic
regression to the data points. The overall trend is towards a red-shifting of the transition,
with a maximum change of approximately 11%. The duality between the unperturbed and
the perturbed atoms is highlighted by the degree to which the curve is symmetric about the
point W/D = 0.5.

4. θ -dependence

An interesting question to ask is what is the qualitative behaviour of the quantities of interest
when the angle θ is varied. In our scheme, the coiling angle is given by the formula

θ = arctan

(
P| �C |
Q| �T |

)
, (5)

where �C is the chiral vector of the tube. While it is conceivable that the perturbation could
follow a truly incommensurate configuration ( P

Q irrational), it is also clear that the coiling angle
appropriate to that system will lie arbitrarily close to that of a commensurate system, provided
we allow P and Q to be sufficiently large. Since we must have a periodic system, θ cannot
be varied continuously, but must increase in discrete steps, similarly to the width-dependence
results presented above. We have investigated the angular dependence of these quantities for
an (18, 0) zigzag nanotube. Such a tube is an ideal candidate for these investigations since the
fundamental unit cell is only 2a√

3
in length, but 18a in width, where a is the lattice parameter

of the graphene structure. This allows one to consider a wide range of angles. Holding both
the width of the stripe W = 6.7 Å and the amplitude of the perturbation λ = −0.3γ constant,
figure 4 shows both m11 and M11 transitions as a function of the coiling angle. Panel (a) displays
m11 in units of γ for various coiling angles and panel (b) does the same for M11 in which it is
expressed in units of the unperturbed transition M0

11. Each graph has a smoother curve acting
as a guide to the eye which reflects the overall trend of the above quantities and how they
depend on the coiling angle. What is evident from panel (a) is that the stepwise fluctuations
that surround the smooth curve becomes much more pronounced at values of θ corresponding
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Figure 5. (a) A plot of the size of the minigap m11 as a function of the polarization strength
parameter λ for two different chiralities and coiling angles. The solid (black) curve corresponds to a
(6, 6) nanotube perturbed by a stripe at an angle of 64.3◦, while the dashed (red) curve corresponds
to a (6, 0) nanotube subject to a stripe at an angle of 34.7◦. The dotted line indicates where the
minigap energy is equivalent to room temperature. In (b) we plot the fundamental semiconducting
transition as it depends on the perturbation amplitude for a (7, 0) nanotube wrapped by a stripe at
angle 39.0◦. A monotonic red-shifting of the gap is observed in the range of interest. In all cases
the width of the perturbation is 5.33 Å.

to coiling angles that are perfectly commensurate with the high symmetry directions of the
nanotube. In those cases the perturbation-induced minigaps can be as large as 40 meV. As far
as the M11 transition is concerned, one can clearly see in panel (b) that at low coiling angles
there is a noticeable blue-shifting of the transition, whereas at mid to high coiling angles there
is a decrease in the transition energy. Such a non-monotonic behaviour in the angle-dependent
electronic structure has been reported for the case of helical short-range potentials in cylindrical
geometries [14].

5. λ-dependence

Intuitively, one expects that the features of the DOS investigated here will vary continuously
as a function of the parameter λ, in contrast to the discontinuous behaviour found as a function
of W and of θ . This would mean that the VHS separations should vary continuously as a
function of the perturbation amplitude. As depicted in figure 5, we indeed find that they depend
continuously on the amplitude of the perturbation λ. In the case of the (6, 0) zigzag and (6, 6)
armchair nanotubes which are metallic in the absence of a perturbation, we find that for small
perturbation amplitudes, the minigaps grow monotonically as we increase the magnitude of the
perturbation. In contrast, for the semiconducting (7, 0) tube, we see the opposite trend in S11.
In this case, the gap decreases as a function of λ. This shows that as we increase the strength
of the helical perturbations, metallic tubes are driven into becoming more semiconducting-like
whereas the originally semiconducting tubes have the opposite effect of reducing their gaps.

The systematic study carried out above shows how the DOS may respond to a coiling
perturbation that represents the effect of helically wrapping molecules surrounding a nanotube.
Two characteristic features of the DOS were investigated, namely the perturbation-induced
minigaps m11 as well as those associated with the transitions M11 and S11. They were shown
to depend on the characteristic features of the perturbing potential such as the wrapping
angle θ , the polarizing width W and the strength of the polarizing potential λ. More than
a purely academic exercise, this is a valuable point to assess how some physical quantities
may respond to the presence of a wrapping charge distribution. For the sake of illustration,
rather than treating λ as a free parameter, it is instructive to estimate its value by equating the
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perturbation-induced change in total energy to the measured binding energy between the
wrapping molecules and nanotubes. While the polarization interaction is certainly not the
only component of the measured binding energy, under the assumption that other contributions
such as the elastic energy and the van der Waals interaction are small, it will be the dominant
contribution. This allows us to estimate how strongly bound the parts must be before any
perceptible change occurs in the DOS. Following figure 5(a), absent any charge transfer, we
find that to open a gap comparable to room temperature requires a value of λ of about 1 eV in
the case of a wrapped (6, 6) nanotube, and that larger minigaps require monotonically larger λ.
For the case of organic polymers [16], we find the magnitude of λ to be too small to produce a
minigap of this magnitude. Likewise, for the case of undoped DNA molecules [17] it is also not
sufficiently strong to produce significant alterations in their electronic structure features. These
examples seem too weakly bound to produce dramatic changes in the electronic structure of
the host nanotube. This suggests that extra charge must be required on the backbone of the
wrapping molecule to increase its polarizing effect and, in turn, its binding energy. In fact,
ionic doping has been reported to affect the optical response of DNA–nanotube composites [18]
by increasing the amount of charge on the DNA backbone, which seems consistent with our
findings.

6. Conclusions

In summary, we have performed a systematic study of the effect of a coiling polarizing potential
on the electronic structure of carbon nanotubes. The perturbation characterized by the wrapping
angle θ , the polarizing width W and the polarization strength λ introduces an additional
geometrical chirality that may not necessarily coincide with the intrinsic chiral angle of the
nanotube. It is noted that the largest changes however occur in the commensurate case. Features
of the electronic density of states characterizing the VHS transitions were seen to depend on θ ,
W and λ with different degrees of sensitivity. Furthermore, a geometrical representation similar
to the one used for pure nanotubes was used to trace how the VHS evolved with changes of the
perturbation parameters. Furthermore, we estimate a minimum binding energy between the
tube and the wrapping molecules to generate a minigap comparable in size to the ambient
thermal energy. We find that while it is in principle possible to alter the electronic structure
of nanotubes by wrapping a charge distribution around them, noticeable changes tend to occur
for the cases in which the binding energy molecules are more strongly bound to the nanotubes.
We argue that changes in the optical response induced by ionic doping on DNA–nanotube
composites may be one such example.
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